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Abstract

Fourier analysis has long been studied as a method to analyse real-

valued or complex-valued signals. The Clifford-Fourier transform re-

cently developed by Brackx, De Schepper, and Sommen in [4] and

[5] has led to the development of Fourier analytic methods for hyper-

complex or Clifford-valued signals. In the quaternionic case, Brackx

et al. have found the kernel of the Quaternionic Fourier transform

which allows for much easier calculation, and we focus much of our

attention in this thesis on the quaternionic case.

We define the continuous wavelet transform of quaternion-valued sig-

nals on the plane and prove a Calderón reproducing formula. We

also define the monogenic signal, a generalization of the analytic sig-

nal of a function on the real line. We provide a characterization of

translation-invariant operators and submodules of the quaternionic

L2 module. We develop several fundamental analogues of classical or-

thogonal wavelet theory pioneered by Cohen, Daubechies, Mallat, and

Meyer to quaternion-valued functions on the plane. We include design

conditions required to produce wavelets which have compact support

and desired regularity. We also develop the basic theory needed for

constructing a biorthogonal wavelet basis and construct an example.

For a general Clifford algebra, we develop a condition on f so that

f ∗ g satisfies a convolution theorem. We also develop a Clifford-

Fourier characterization of the Clifford-valued Hardy spaces on Rd.


